Unstructured Data Analysis with DOCETL

Shreya Shankar¹, Aditya G. Parameswaran¹, Eugene Wu² UC Berkeley EECS¹ and Columbia University² November 2024

UC Berkeley

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

DocETL: A System for Unstructured Data Processing Launched ~2 mos ago 1.3k 🖕 github.com/ucbepic/docetl 300+ 😳

Declarative YAML interface and operator suite that makes complex document processing accessible to non-programmers

Improves output accuracy and quality by intelligently and automatically **decomposing complex tasks**

*We currently focus on optimizing accuracy, not cost.

We're Just Getting Started! 🚀

- Civic Engagement
- Service Psychiatry
- Email Analysis
- Mining Law Articles
- Summarizing educational

resources

Demo

Today's Goals @

KEY INSIGHT

Why Optimize for Accuracy?

X Long documents break LLMs

LLMs make mistakes on hard data processing tasks

Complex tasks require tedious decomposition

LLM-powered query processing requires optimizing for accuracy, not just performance.

2 An Architecture for Such a Query Optimizer

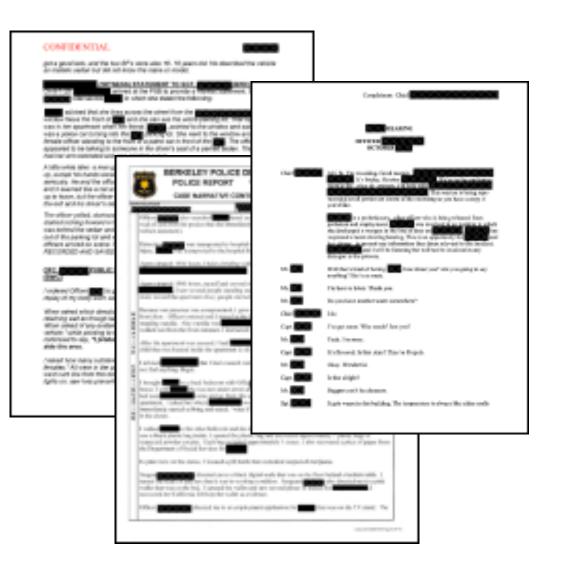
LLMs as accuracy judges in query optimization

25-66% accuracy boosts across tasks

Complex Document Processing

https://bids.berkeley.edu/california-police-records-access-project

Police Records



Required Analysis Types

Identify instances of procedural violations and misconduct

Link incidents involving the same officer across documents

Challenges Multiple document types (case reports, hearings, etc) Very long & inconsistent

Challenges **Complex reasoning required Cross-document analysis**

Extract Misconduct

Current Approaches

Too time-consuming!

Too resource-intensive!

Error-prone

Hard to program

A Declarative Solution

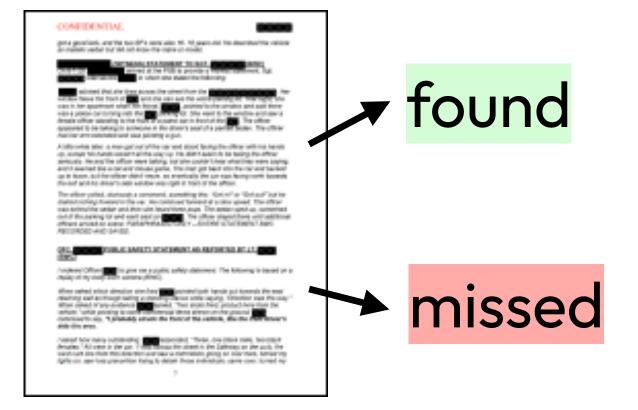
name: extract_misconduct
type: map
output:
 schema:
 misconduct: "list[{officer: str, incident: str}]"
prompt: |
 Analyze the following police record...

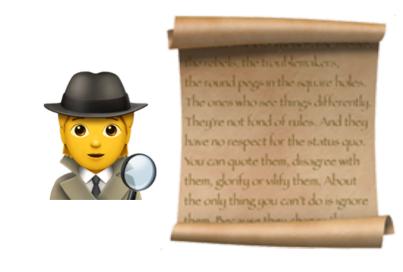
Amenable to complex pipelines

Automatic performance optimization

Is this all??Are wedone??

Still, Writing Reliable Complex Pipelines is Hard





Missed Information

LLMs ignore instances or give incorrect answers when docs are too long

Users must verify correctness themselves

Manual Validation

Experimentation

Users must figure out how best to decompose tasks

Unfortunately, LLM Mistakes are Here to Stay Recent research shows these limitations are fundamental

On Limitations of the Transformer Architecture

Peng, Narayanan, & Papadimitriou 2024

Transformers can't solve certain compositional tasks

© Same Task, More Tokens: Impact of Input Length on LLM Reasoning

Levy, Jacoby & Goldberg, ACL 2024

Longer inputs = worse performance, even when the task's inherent complexity is unchanged

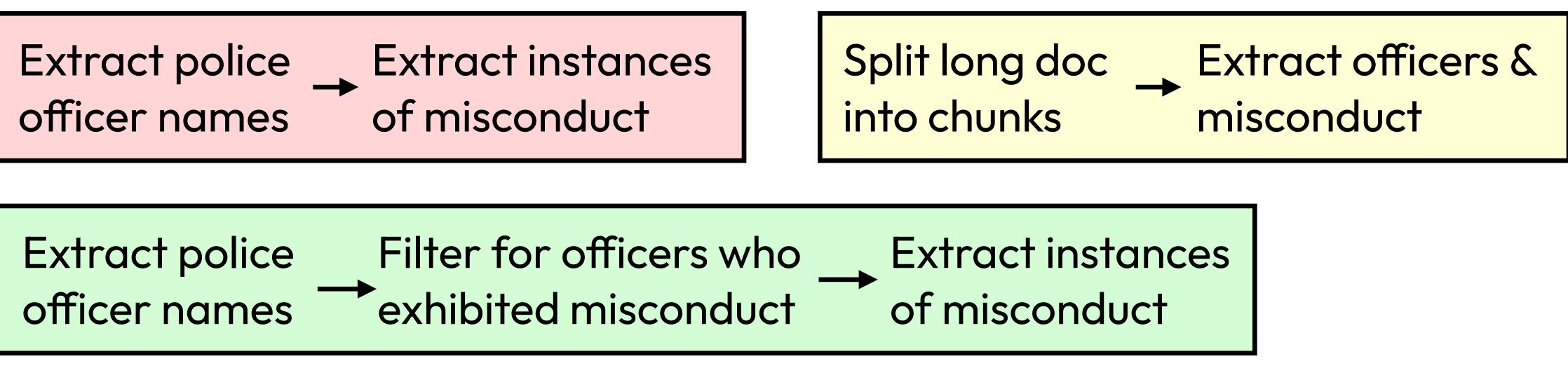
Calibrated Language Models Must Hallucinate

Kalai & Vempala, STOC 2024

Good predictions require some hallucination

Key insight: complex tasks need to be broken down into smaller, well-scoped tasks to be correct.

Systems Should Rewrite Pipelines to Optimize Accuracy



Which plan is best? What parameter choices?

For each police officer involved, extract any instances of misconduct.

Talk Roadmap



DocETL Operators 8 operators for complex document processing

LLM-Powered (5)

🔮 map

Transform each

document into 1+ results

reduce

Aggregate multiple documents into a result

Utility (3)

< unnest

Flatten nested arrays or documents

ℜ split

Divide documents into chunks

No-code; YAML

G filter

Keep/drop documents based on fuzzy predicate

Sequijoin Join documents on fuzzy condition

@^{*} resolve

[New!] Entity resolution across documents

🛷 gather

[New!] Augment chunks with context

Reduce Operator Physical implementation to handle infinite context

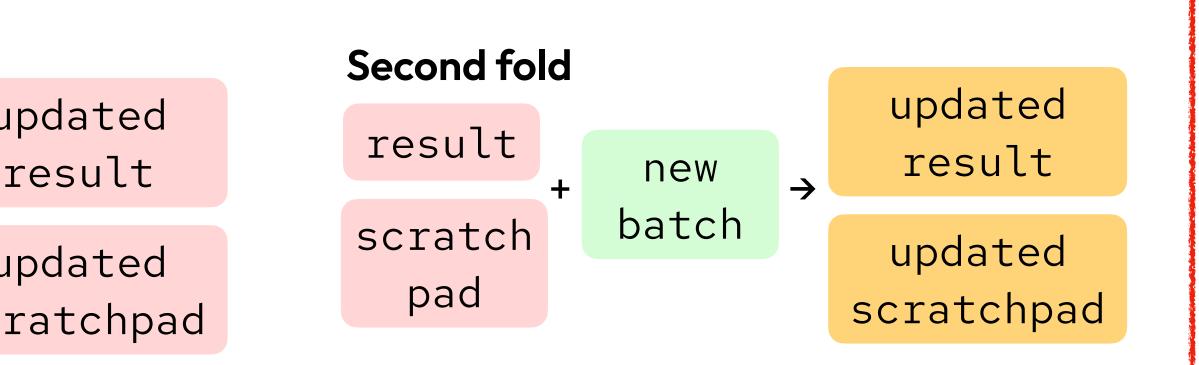
Task: Find types of misconduct Officer Quinnsworth exhibited multiple times

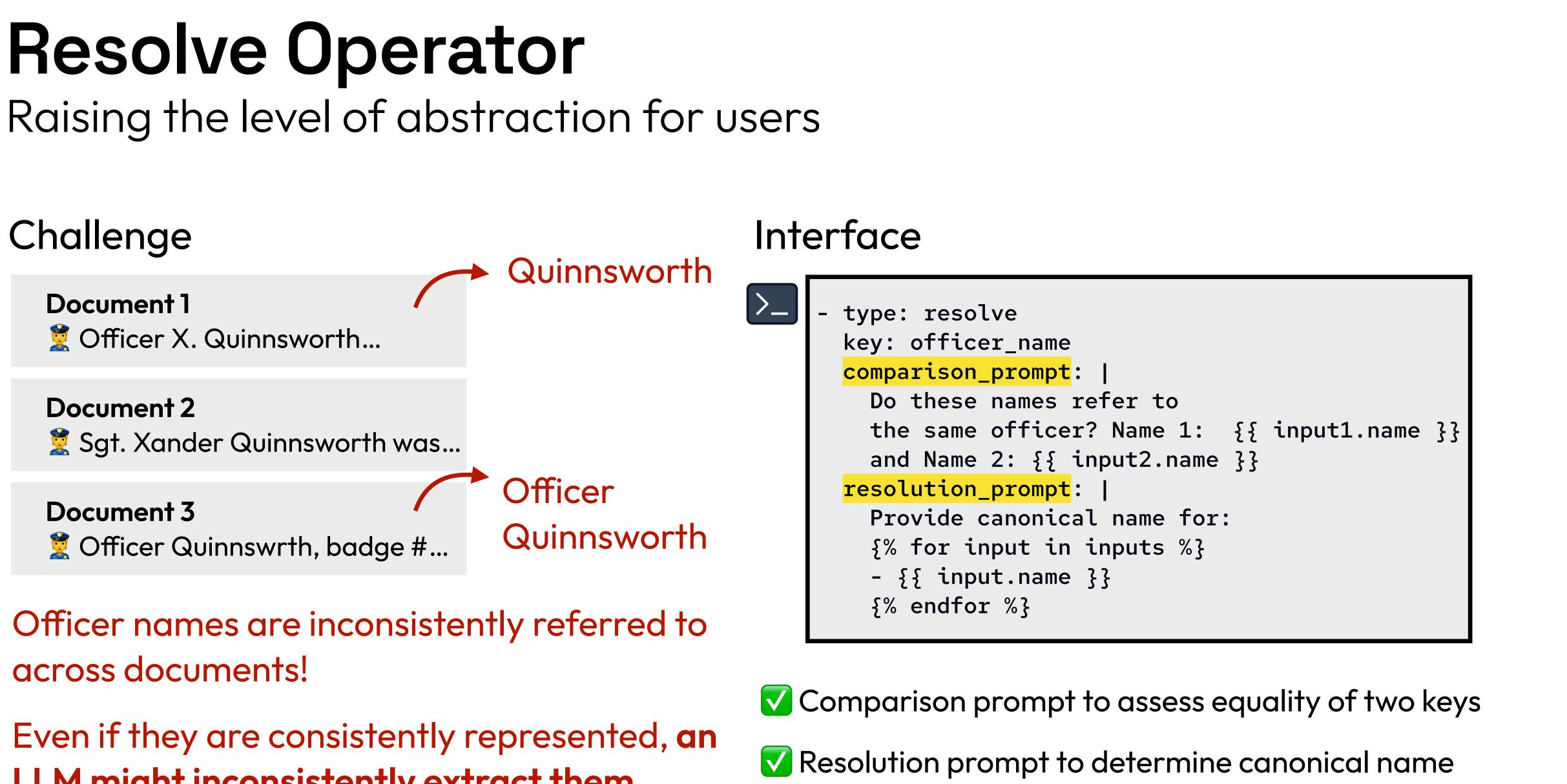
Report #127 "…excessive force during arrest…"	Report #89 "…evidence tampering…"	Rep "exce com
FOLDING Initial state	First fold	
result = {}	result new	up →
<pre>scratchpad = {}</pre>	scratch batch pad	up scra

Scratchpad permits the operator to be maintained incrementally

port #45 cessive force mplaint..."

+100s more docs for Officer Quinnsworth





LLM might inconsistently extract them.

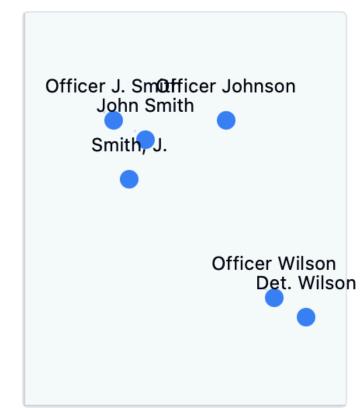
Resolve Operator Implementation

Three-Phase Resolution

1. Blocking Automatically synthesize taskspecific rules (e.g., find a blocking threshold via sampling; have LLM generate code)

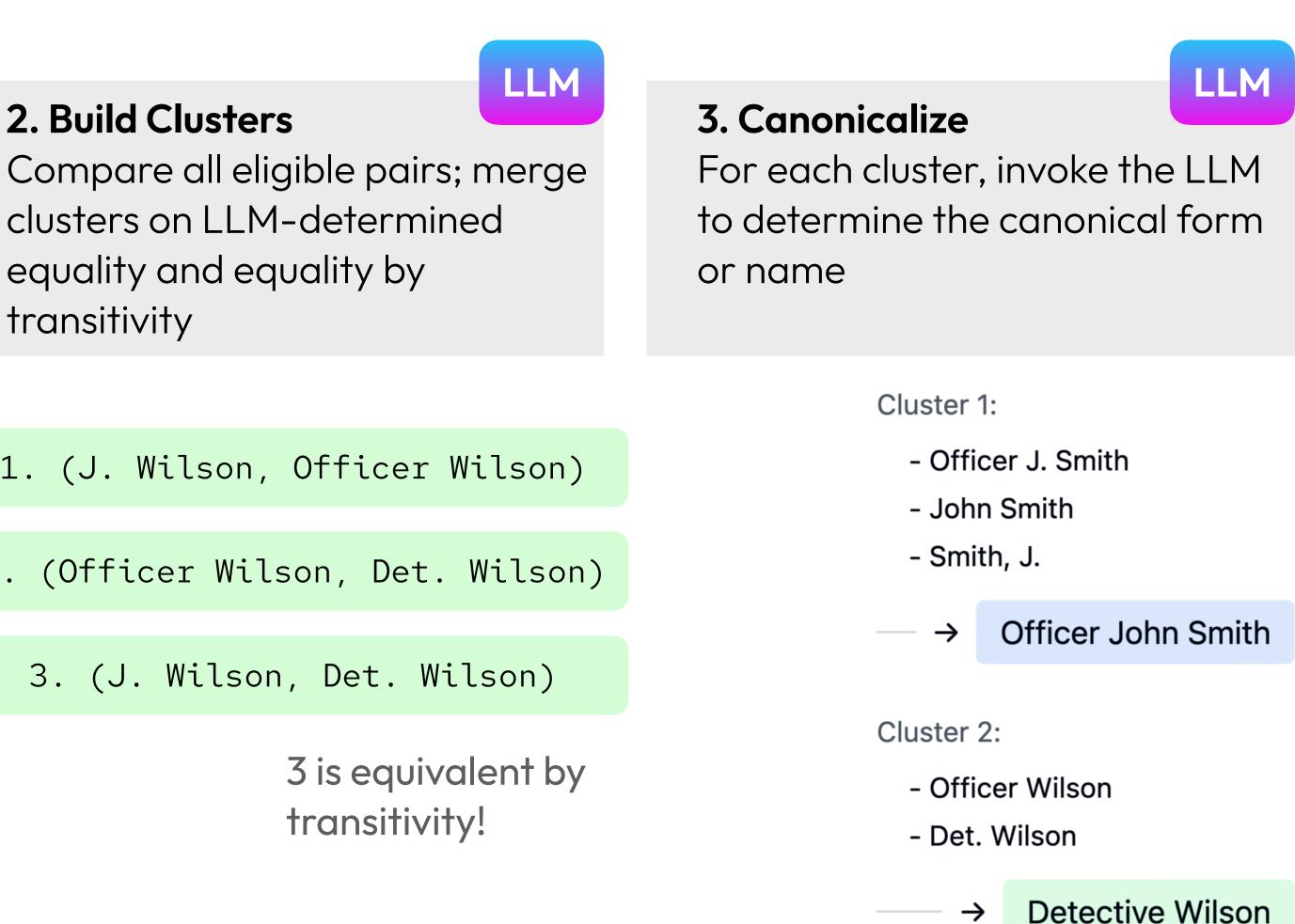
2. Build Clusters

equality and equality by transitivity



1. (J. Wilson, 2. (Officer Wil
2. (Officer Wil
2. (Officer Wil
3. (J. Wilso

Embedding-based blocking: Only compare pairs that meet a similarity threshold



 \rightarrow

Gather Operator Augmenting chunks post-split

Challenge	Context
Chunk 1 Officer J. Smith responded	Previo Chu
Chunk 2 He then proceeded to	See Figure next page detailed v
Who is "he"? What happened before?	[Figure 2] A diagram s

Need next chunk for referenced context

t Types

ous/Next unks

re 2 on the age for a view of...

Architecture showing...

Transformed Content

Previous 200 pages: "Suspect was last seen in Paris…"

"He boarded a train to..."

Summary of a long prefix

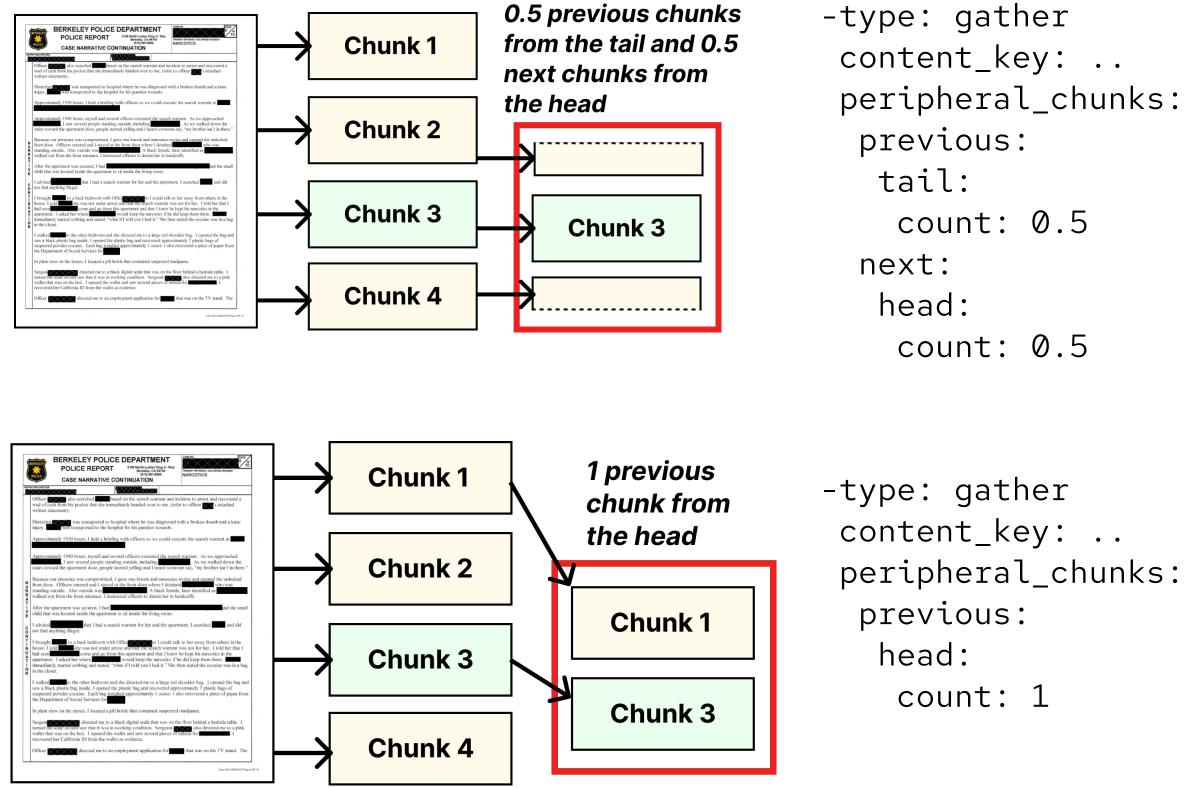
Document Metadata

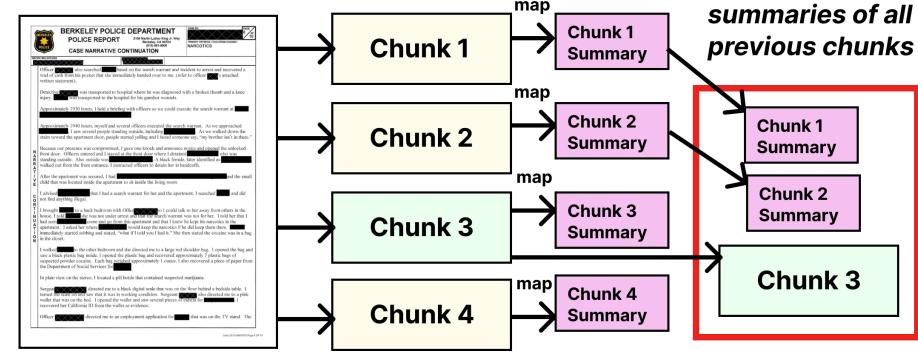
Contract Terms
 Licensing
 Usage Rights

The licensee shall...

Section hierarchy context

Gather Operator Illustrative Examples



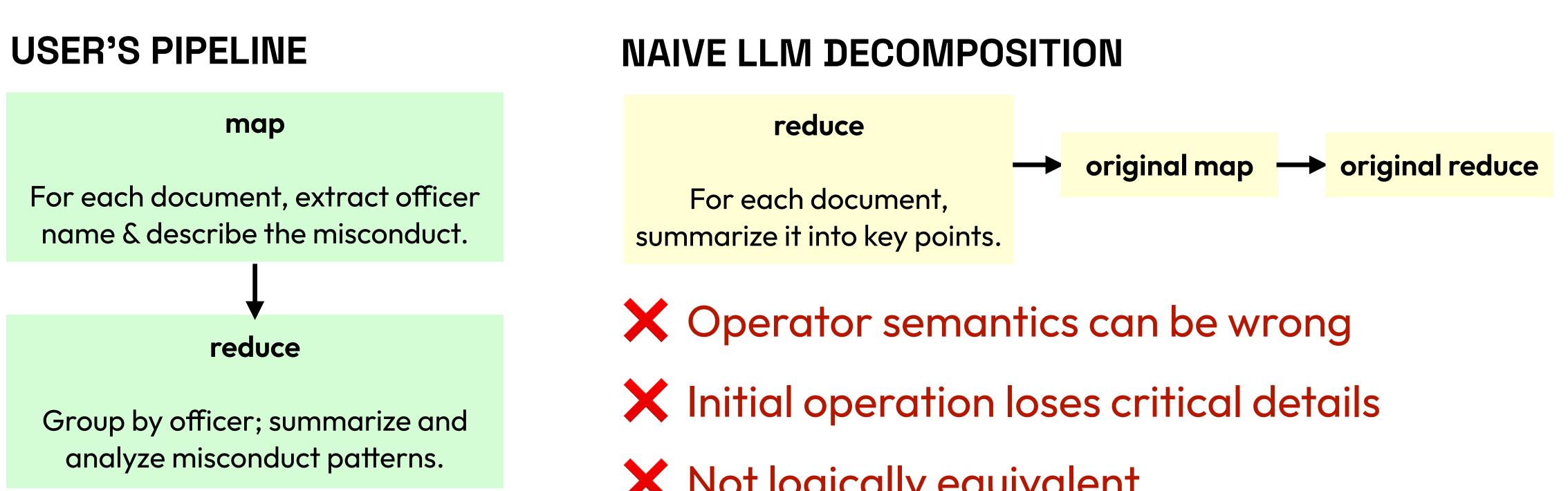


-type: gather content_key: chunk peripheral_chunks: previous: middle: content_key: chunk_summary

Talk Roadmap

Optimizer Architecture Using LLM-as-a-judge to guide optimization decisions

Why Rewrite Directives?



Rewrite directives enable "safe" operator decomposition.

- X Not logically equivalent

13 Rewrite Directives Goal = Intelligently Decompose Tasks for Better Accuracy

X Data Decomposition

Break down large inputs into manageable pieces

- Document chunking
- Multi-level aggregation

- Chaining & Isolating
- Preprocessing

KEY PROPERTIES

- Abstract frameworks, not concrete rules
- Interpreted by LLM agents based on context
- Infinitely many possible instantiations!

Projection Synthesis

Break down the task described in the prompt into 2+ prompts

LLM-Centric Rules

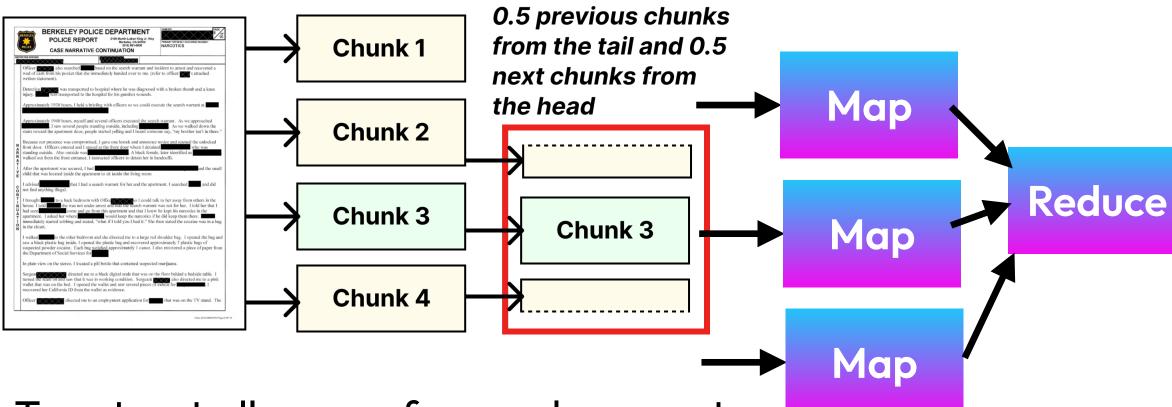
Refine LLM-generated outputs

- Gleaning •
- Duplicate detection •

Data Decomposition Directives Solving the "data is too hard" problem

DOCUMENT CHUNKING

 $\mathsf{Map} \Longrightarrow \mathsf{Split} \to \mathsf{Gather} \to \mathsf{Map} \to \mathsf{Reduce}$



To extract all names from a document...

- 1. Split the document into chunks
- 2. Extract names from each chunk
- 3. Combine all the extracted names into one result

MULTI-LEVEL AGGREGATION

 $\mathsf{Reduce} \Longrightarrow \mathsf{Reduce} \to \mathsf{Reduce}$

Document	City	State
The news today is	Berkeley	CA
Good morning!	Dallas	ТХ
Happy November!	Berkeley	CA
It's another sunny	Albany	NY
1000s more docs		

To summarize documents for each state, we can...

- 1. Summarize documents for each city
- 2. Summarize the city summaries

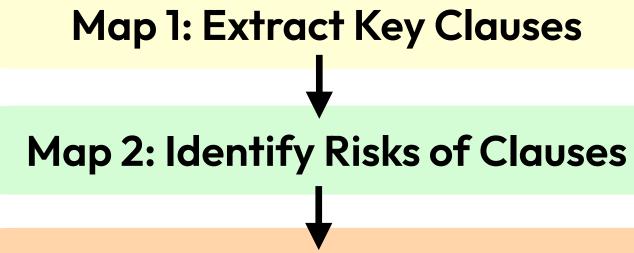
Projection Synthesis Directives Solving the "task is too hard" problem

CHAINING

 $Map \Longrightarrow Map \rightarrow Map$

Original Complex Task

"Analyze this legal document and identify key clauses, risks, and provide recommendations"



Map 3: Provide Recs

ISOLATION

 $\mathsf{Map} \Longrightarrow (\mathsf{Map} \mid\mid \mathsf{Map}) \rightarrow \mathsf{Reduce}$

Original Complex Task

"Analyze the app performance and customer service in these reviews: The checkout process was slow but the customer service was excellent..."

Map 1: Slow App Performance Map 2: Excellent Customer Service Reduce/Combine Analysis GENERAL PREPROCESSING $Op \Longrightarrow Map \rightarrow Op$

General use cases:

- Extract relevant fields
- Transform data format
- Add derived features

Before reduce: extract key info before aggregating

Before filter: compute explicit criteria fields

LLM-Centric Directives Addressing LLM idiosyncrasies to improve outputs

GLEANING

 $Map \implies Map \rightarrow (Map_{validator} \rightarrow Map_{qenerator})^{<k}$ Reduce \implies Reduce \rightarrow (Map_{validator} \rightarrow Reduce_{generator})^{<k}

1. Initial Operation

Extract all political views mentioned...

Output: "Healthcare reform, tax policy"

2. Validation and Feedback

"Missing environmental policy discussion from paragraph 3"

"Healthcare reform, tax policy, environmental regulations"

DUPLICATE RESOLUTION

Reduce \implies Resolve \rightarrow Reduce

3. Refined Output

Raw Keys			
New York City Berkeley			
NYC	Berkeley, CA		

To summarize documents for each city...

- 1. Resolve the city names
- 2. Summarize as intended

Comparing Rewrite Directives A sample of what we've learned thus far...

X Data Decomposition

Good for:

- Long or many documents
- Outputs linear in # chunks or documents

Extracting all multiple choice questions from a test; finding all citations in a research paper

Projection Synthesis

Good for:

definition

"Extract interesting quotes" \rightarrow Define interesting, then extract

things

Extracting 40 fields \rightarrow Break into independent extractions

• Ambiguous prompts—where task criteria need better

• Multi-aspect tasks—when the prompt asks for many different

Gleaning

Good for:

- Near-miss extractions—when initial output is close but missing a few items
- "Needle-in-a-haystack"—finding specific, rare information in documents

Finding key statements or claims in research papers

Modern LLMs support 2M context window—quite permissive!

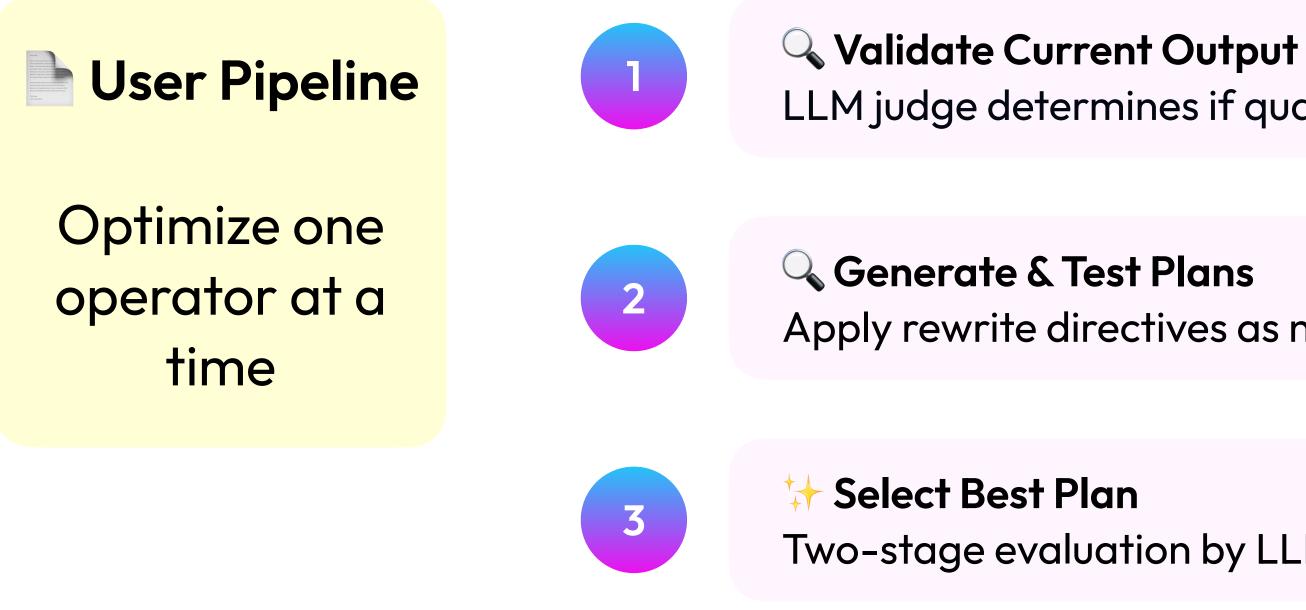
Requires document to fit in context window.

Talk Roadmap

Optimizer Architecture Using LLM-as-a-judge to guide optimization decisions

1 Interactive Pipeline Development Vision for **human-Al collaboration** on DocETL with interactive latencies

Agentic Optimizer Improving accuracy in user-provided pipelines



KEY INSIGHT

LLM agents generate, validate, and select plans to improve accuracy

LLM judge determines if quality is sufficient

Apply rewrite directives as needed

Optimized Pipeline

Move to next operator

Two-stage evaluation by LLM judge

Agentic Optimizer—1. Validation Agents How do we determine whether an operator should be rewritten?

LLM creates evaluation rubric [1, 2]

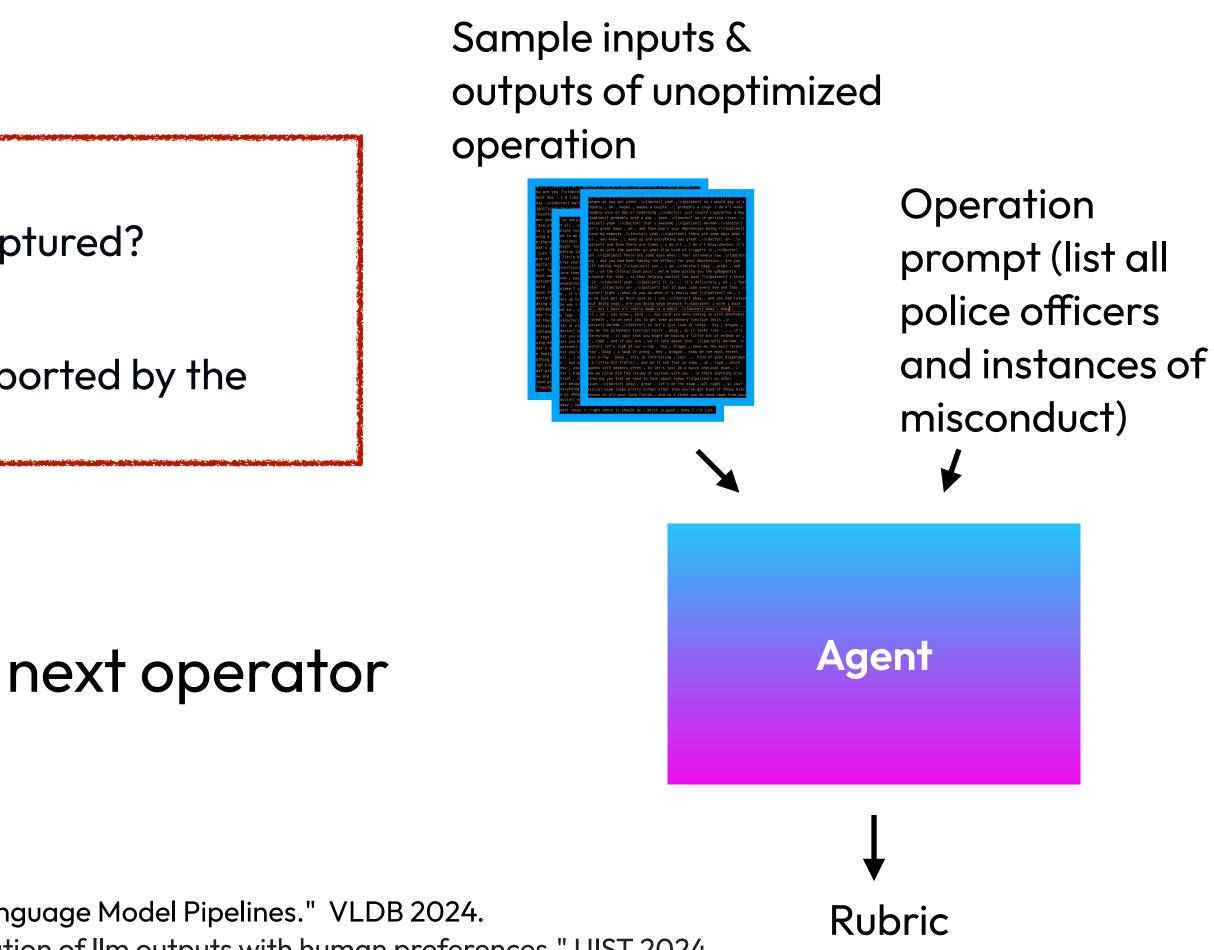
Example rubric:

- Are all instances of misconduct from the document captured?
- Are dates and locations included for each incident?
- Are there any misconduct claims in the output not supported by the document?

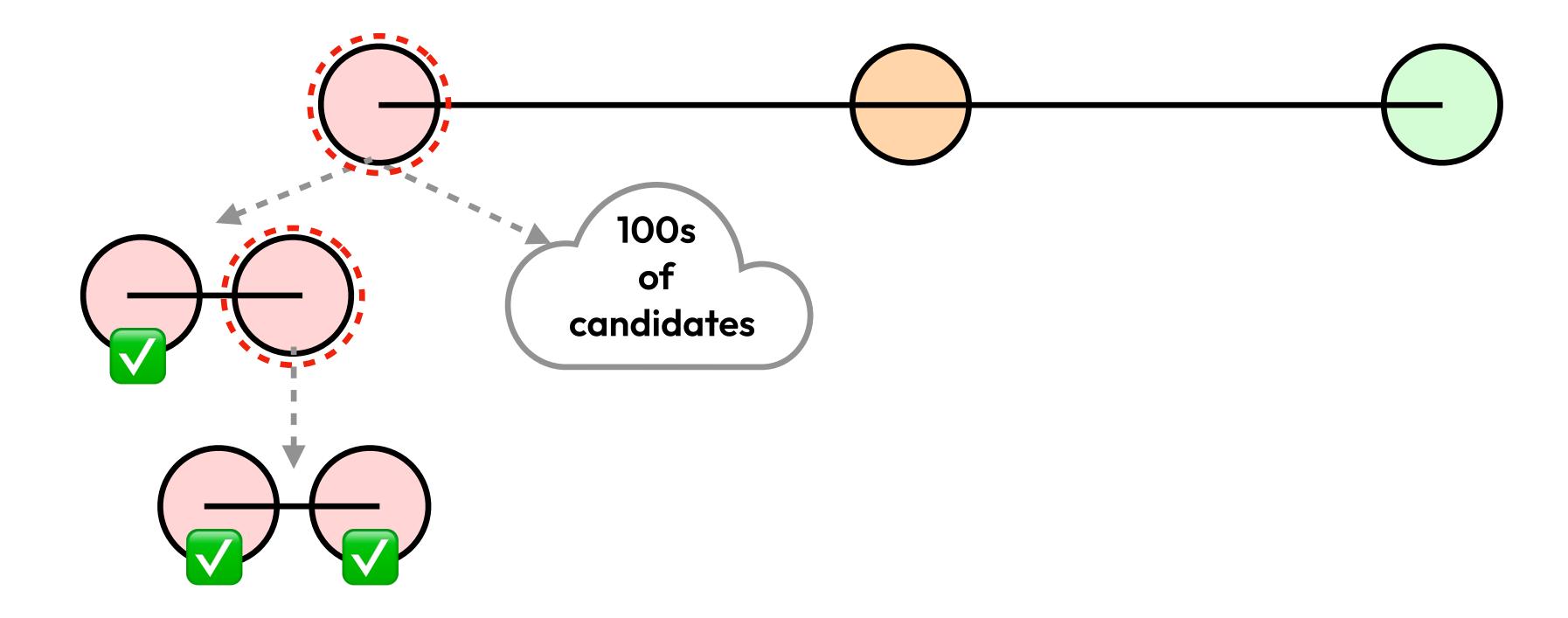
LLM evaluates sample outputs

- If output meets all criteria → Move to next operator
- If not \rightarrow Proceed to optimization

[1] Shankar, Shreya, et al. "SPADE: Synthesizing Data Quality Assertions for Large Language Model Pipelines." VLDB 2024. [2] Shankar, Shreya, et al. "Who validates the validators? Aligning Ilm-assisted evaluation of Ilm outputs with human preferences." UIST 2024.



Agentic Optimizer—2. Plan Generation How do we come up with specific rewrites?



Agentic Optimizer—3. Ranking Candidate Plans How do we determine the best rewrite?

Two-Stage Evaluation:

Initial rating (1-5) of each plan's outputs
 Pairwise comparisons of top k plans

Example Comparison

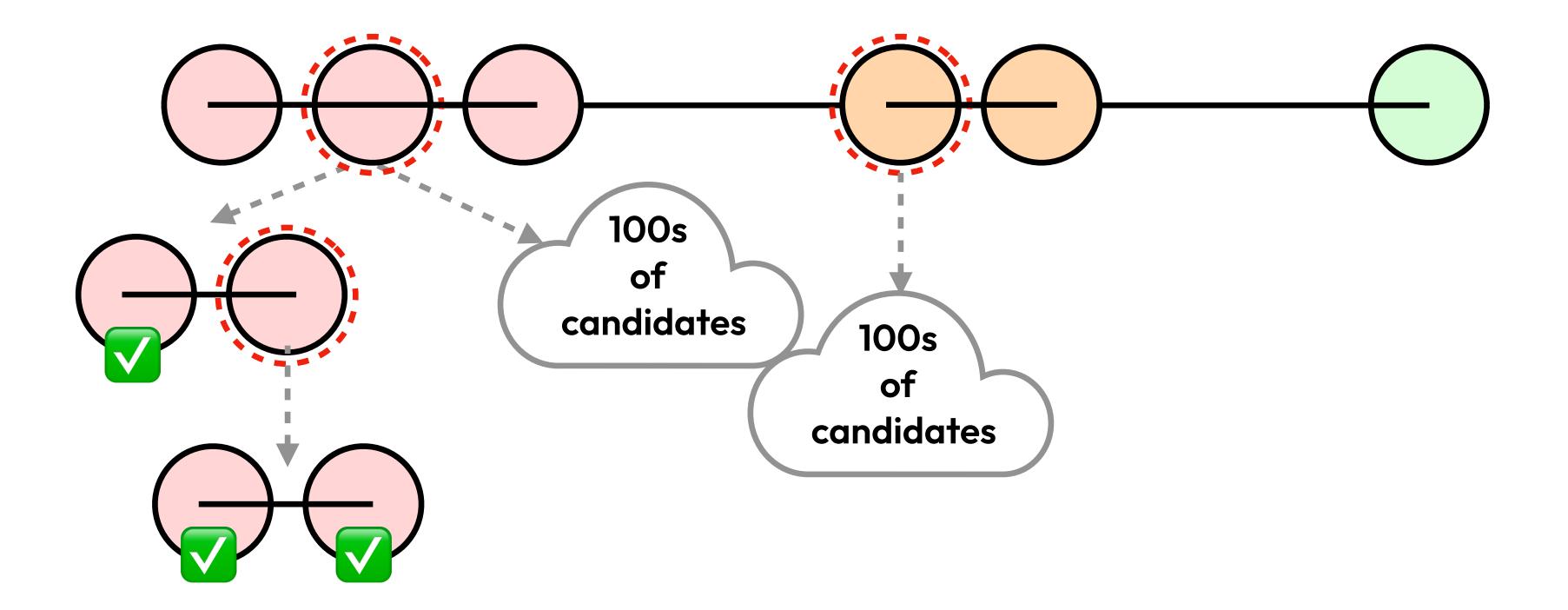
"Plan B is better because it includes all instances of misconduct with proper attribution, while Plan A misses several incidents from pages 45-48..."

Hybrid approach balances thoroughness with computational efficiency: $O(n) + O(k^2)$

SAMPLE PLAN RATINGS	
Basic Map	3.2
Projection Synthesis A	4.2

Projection Synthesis B 3.9

Agentic Optimizer



Evaluation

25-66% improvements across tasks

LEGAL DOCUMENT ANALYSIS

Task: Extract 40 types of clauses from legal documents

Method	Precision	Recall	F1
DocETL (Unopt)	0.305	0.451	0.364
LOTUS	0.350	0.473	0.379
Palimpzest	0.059	0.013	0.022
DocETL (Opt)	0.394	0.731	0.474

+25% improvement in F1 score +55% improvement in recall

17x the cost of LOTUS or DocETL (unoptimized)

Evaluation

25-66% improvements across tasks

W DECLASSIFIED ARTICLE ANALYSIS

Task: Find distinct locations of paranormal events

Requires Entity Resolution

-99.4% pairwise	Task	Metric Baseli		DocETL (Opt)
comparisons	Declassified Articles	Location Precision	0.994	1.000
eliminated		Location Recall	163	270
+66%		Hallucination Rate	0.465	0.312
improvement in	Game Reviews	Sentiment Accuracy	0.664	0.650
recall		Kendall's Tau	0.470	0.631
1.2x cost				

GAME REVIEW ANALYSIS

Task: Create a timeline of positive and negative reviews for video games

Long Review Docs

-33% reduction in hallucinations +34% improvement in ordering



Case Study: Police Misconduct Task 227 documents, avg. 12.5K tokens, 2% exceed context limit

👮 TASK

Generate detailed misconduct summaries for each officer, including: officer's name, types of misconduct, comprehensive summary with dates and locations.

Metric

The officers name is a specific name, not generic

The summary contains a date and location

The summary does not omit any instance of misconduct

VALIDATION

Human evaluation on 100 random samples • 96–97% agreement with LLM judge

Baseline	DocETL S	DocETL T	DocETL O
0.84	0.93	0.89	0.87
0.67	0.10	0.91	0.92
0.42	0.78	0.76	0.80

Up to +90% improvements! 0.6x the cost of the baseline*

*Baseline includes entire documents in the reduce operation, while S, T, and O apply projection synthesis & are cheaper.

Takeaway 1: Our optimizer can find plans with much higher accuracy (25–90% in our evals).

Takeaway 2: Higher-accuracy plans are not always more expensive.

Talk Roadmap

Interactive Pipeline Development Vision for **human-Al collaboration** on DocETL with interactive latencies

Towards Agentic Data Processing Beyond Accuracy: The Challenge of Ambiguity

"Extract instances of police misconduct"

LLM Output

"Officer Thompson raised his voice during questioning. Officer Miller arrived 10 minutes late to the scene."

Weight States of Contract Contract States of Contr

"Officer Wilson detained suspect for 48 hours without charges. Officer Davis conducted search without warrant."

KEY INSIGHT

LLM-powered data processing requires **sensemaking**!

L Human Refinement

"Minor behavioral issues aren't misconduct. Focus on violations of policy, use of force, or civil rights."

L Human Refinement

"Good, but also note if these actions were justified by department policy exceptions."

Human-Centered Research Questions

W INTENT UNDERSTANDING

When do we optimize vs refine operator definitions?

- Did they mean excessive force or any force?
- Is this a prompt issue or optimization issue?

> HUMAN-IN-THE-LOOP

When & how should humans steer the LLM?

• During optimization? How so?

VISUALIZATION

How do we visualize unstructured operations?

• Data flows between operators? Data in the outputs?

We're riding a wave of unprecedented capabilities in data processing. It is very exciting! 🛟

Data Systems Research Questions Towards Cheap, Fast, and Accurate Queries

\$ COST & ACCURACY OPTIMIZATION What rewrite directives optimize runtime and cost without sacrificing accuracy?

• Operator fusion, hybrid cost models, retrieval/RAG, etc.

EFFICIENT OPERATOR EXECUTION

How can we adapt plans to data characteristics during execution?

- Expand the set of models we consider for model cascades
- Training binary classification models on-the-fly for resolve, equijoin, filter

INTERACTIVE LATENCIES IN THE UI

How can users quickly iterate on their prompts?

• Sampling, approximate query processing, etc.

We're riding a wave of unprecedented capabilities in data processing. It is very exciting! 🛟

Complex Documents Need Better Tools

Traditional systems struggle with long, unstructured documents

New Operators for New Challenges

Gather for context, resolve for entity variations

Agentic Optimization Works

25 to 66% improvements across case studies

> Human-Al Collaboration is Key

Support evolving understanding between human and AI

Shankar, Shreya, Aditya G. Parameswaran, and Eugene Wu. "DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing." In progress.

